

Progressive Education Society's

Modern college of Arts, Science & Commerce, Ganeshkhind, Pune -16 (Autonomous)

EVEN Semester Examination Mar./April. 2024-25 Faculty: Science and Technology

Program: BSc Gen03 Semester VI Set A
Program(Specific): B.Sc. Course Type: Core
Class:T.Y.B.Sc.(Mathematics) Max. Marks:35
Name of the Course: Optimization Techniques Paper No: V

Course Code: 24-MT-365(A) Time: 2 Hours

Instructions To the Candidates:

1. Draw a well labelled diagram wherever necessary.

2. Figures to the right indicate full marks.

SECTION: A

Q 1) Attempt any **FIVE** of the following.

[5X2=10 Marks]

- A) Define a zero-sum game?
- B) Explain when the dummy activity is used in the construction of Network.
- C) What are the different types of failure that can occur in replacement and maintenance models?
- D) Define the term Fair game.
- E) We have a five jobs each of which has to go through the machines M1 and M2 in the order M1-M2. Processing time (in hrs) are given as:

Job	A	В	C	D	\mathbf{E}
M1	5	2	2	3	4
M2	2	3	7	2	1

Find the optimum sequence.

- F) What is an event in network models?
- H) Consider the function $f(x) = x^2 + x$. Find stationary point of f(x) and determine whether stationary point is maximum or minimum.

SECTION: B

Q 2) Attempt any **Three** of the following.

[3X5=15 Marks]

A) Reduce the following game by dominance property and find value of game.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 7 & 4 \\ 3 & 4 & 1 & 5 & 6 \\ 6 & 5 & 7 & 6 & 5 \\ 2 & 0 & 6 & 3 & 1 \end{bmatrix}$$

B) Draw a network diagram of activities for the project.

Activity	A	В	С	D	Е	F	G	Н	I	J	K
Predecessor	-	-	-	A	В	В	С	D	Е	Н, І	F, G

C) A farm is considering the replacement of a machine whose cost price is Rs.12,000 and scrap value is Rs.500. From experience, the running costs are found to be as follows:

Year	1	2	3	4	5	6	7	8
Running cost (Rs.)	200	500	800	1200	1800	2500	3200	4000

When should the machine be replaced?

D) We have a five jobs each of which has to go through the machines X and Y in the order X-Y.Processing time (in hrs) are given as:

Job	A	В	C	D	\mathbf{E}
Machine X	12	4	20	14	22
Machine Y	6	14	16	18	10

Determine a sequence of these jobs that will minimize the total elapsed time. Also, find idle time for both machines.

E) Consider a function $f(x) = x_1 + 2x_2 + x_1x_2 - x_1^2 - x_2^2$. Find stationary point of f(x) and check whether stationary point is maximum or minimum.

2

SECTION: C

Q 3) Attempt any **One** of the following.

[1X 10=10 Marks]

A) A manufacturing company processes 6 different jobs on two machine A and B in the order A-B. Number of units of each job and it's processing time on A and B are given below. Find optimal sequence, total minimum elapsed time and idle time for each machines.

Job	No. of units of each job	Processing time		
		Machine A	Machine B	
1	3	5	8	
2	4	16	7	
3	2	6	11	
4	5	3	5	
5	2	9	7.5	
6	3	6	14	
7	2	5	4	

B) i) Obtain the optimal strategies for both person and the value of game for two person zero sum game whose payoff matrix is given as follows.

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0 \end{bmatrix}$$

ii) Solve LPP by Lagrange method.

Optimize
$$Z=2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$
 subject to:

$$x_1 + x_2 + x_3 = 20$$

